38 research outputs found

    Postural injury risk assessment for industrial processes using advanced sensory systems

    Full text link
    The major contributions of this research delivered both advancements and novel frameworks to enhance the current methods of postural assessments within industrial environments. This included the development of load vs repetition analysis, A novel BVH Model and a low cost ergonomic scoring tool relying on pixel labelling

    Machine Learning Meets Advanced Robotic Manipulation

    Full text link
    Automated industries lead to high quality production, lower manufacturing cost and better utilization of human resources. Robotic manipulator arms have major role in the automation process. However, for complex manipulation tasks, hard coding efficient and safe trajectories is challenging and time consuming. Machine learning methods have the potential to learn such controllers based on expert demonstrations. Despite promising advances, better approaches must be developed to improve safety, reliability, and efficiency of ML methods in both training and deployment phases. This survey aims to review cutting edge technologies and recent trends on ML methods applied to real-world manipulation tasks. After reviewing the related background on ML, the rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue. The paper is closed with important research directions for future works

    A Comprehensive Review on Autonomous Navigation

    Full text link
    The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed

    Passive muscle force analysis during vehicle access: a gender comparison

    Full text link
    Ensuring customer satisfaction within the automotive industry is a top priority. Primary concerns of satisfaction revolve around perceived comfort of entering and exiting vehicles. The ease of this task is attributed mostly to the design of the vehicles door frame however these are not tailored towards a specific gender. In this paper we present a biomechanical analysis-based gender assessment during entering and exiting a vehicle. The proposed method of analysis provides an assessment that can be used to predict differences between genders. The trials conducted in this study used ten subjects entering a common family vehicle. The discomfort measure based on the normalised muscle forces relies on biomechanical analysis of posture sequences entering and exiting the vehicles

    Skeleton-free task-specific rapid upper limb ergonomie assessment using depth imaging sensors

    Full text link

    Validation of Polar OH1 optical heart rate sensor for moderate and high intensity physical activities

    Full text link
    BACKGROUND: Optical measurement techniques and recent advances in wearable technology have made heart rate (HR) sensing simpler and more affordable. OBJECTIVES: The Polar OH1 is an arm worn optical heart rate monitor. The objectives of this study are two-fold; 1) to validate the OH1 optical HR sensor with the gold standard of HR measurement, electrocardiography (ECG), over a range of moderate to high intensity physical activities, 2) to validate wearing the OH1 at the temple as an alternative location to its recommended wearing location around the forearm and upper arm. METHODS: Twenty-four individuals participated in a physical exercise protocol, by walking on a treadmill and riding a stationary spin bike at different speeds while the criterion measure, ECG and Polar OH1 HR were recorded simultaneously at three different body locations; forearm, upper arm and the temple. Time synchronised HR data points were compared using Bland-Altman analyses and intraclass correlation. RESULTS: The intraclass correlation between the ECG and Polar OH1, for the aggregated data, was 0.99 and the estimated mean bias ranged 0.27-0.33 bpm for the sensor locations. The three sensors exhibited a 95% limit of agreement (LoA: forearm 5.22, -4.68 bpm; upper arm 5.15, -4.49; temple 5.22, -4.66). The mean of the ECG HR for the aggregated data was 112.15 ± 24.52 bpm. The intraclass correlation of HR values below and above this mean were 0.98 and 0.99 respectively. The reported mean bias ranged 0.38-0.47 bpm (95% LoA: forearm 6.14, -5.38 bpm; upper arm 6.07, -5.13 bpm; temple 6.09, -5.31 bpm), and 0.15-0.16 bpm (95% LoA: forearm 3.99, -3.69 bpm; upper arm 3.90, -3.58 bpm; temple 4.06, -3.76 bpm) respectively. During different exercise intensities, the intraclass correlation ranged 0.95-0.99 for the three sensor locations. During the entire protocol, the estimated mean bias was in the range -0.15-0.55 bpm, 0.01-0.53 bpm and -0.37-0.48 bpm, for the forearm, upper arm and temple locations respectively. The corresponding upper limits of 95% LoA were 3.22-7.03 bpm, 3.25-6.82 bpm and 3.18-7.04 bpm while the lower limits of 95% LoA were -6.36-(-2.35) bpm, -6.46-(-2.30) bpm and -7.42-(-2.41) bpm. CONCLUSION: Polar OH1 demonstrates high level of agreement with the criterion measure ECG HR, thus can be used as a valid measure of HR in lab and field settings during moderate and high intensity physical activities

    Comparison Study of Inertial Sensor Signal Combination for Human Activity Recognition based on Convolutional Neural Networks

    Full text link
    Human Activity Recognition (HAR) is one of the essential building blocks of so many applications like security, monitoring, the internet of things and human-robot interaction. The research community has developed various methodologies to detect human activity based on various input types. However, most of the research in the field has been focused on applications other than human-in-the-centre applications. This paper focused on optimising the input signals to maximise the HAR performance from wearable sensors. A model based on Convolutional Neural Networks (CNN) has been proposed and trained on different signal combinations of three Inertial Measurement Units (IMU) that exhibit the movements of the dominant hand, leg and chest of the subject. The results demonstrate k-fold cross-validation accuracy between 99.77 and 99.98% for signals with the modality of 12 or higher. The performance of lower dimension signals, except signals containing information from both chest and ankle, was far inferior, showing between 73 and 85% accuracy
    corecore